Problem Set \# 1

(On Solid State Physics for B.Sc. (Physics) Part-III)

Dr. Sunil Kumar Yadav*
Department of Physics, Maharaja College, Arrah, Bihar 802301, India.
(Dated: May 28, 2020)
> "Our virtues and our failures are inseparable, like force and matter. When they separate, man is no more."
> - Nikola Tesla

1. Define primitive unit cell and conventional unit cell.
2. How many atoms are in the primitive unit cell of graphite?
3. Prove that any Bravais lattice has inversion symmetry in a lattice point.
4. Prove that the diamond structure is invariant under an inversion in the midpoint of any nearest neighbor bond.
5. The primitive translation vectors of a hexagonal space lattice are defined as

$$
\mathbf{a}_{1}=(\sqrt{3} a / 2) \hat{\mathbf{x}}+(a / 2) \hat{\mathbf{y}} ; \quad \mathbf{a}_{2}=-(\sqrt{3} a / 2) \hat{\mathbf{x}}+(a / 2) \hat{\mathbf{y}} ; \quad \mathbf{a}_{3}=c \hat{\mathbf{z}} .
$$

(i) Show that the volume of the primitive cell is $\sqrt{3} / 2 a^{2} c$.
(ii) Show that the primitive translations of the reciprocal lattice are:

$$
\mathbf{b}_{1}=\left(\frac{2 \pi}{\sqrt{3}} a\right) \hat{\mathbf{x}}+\left(\frac{2 \pi}{a}\right) \hat{\mathbf{y}} ; \quad \mathbf{b}_{2}=-\left(\frac{2 \pi}{\sqrt{3}} a\right) \hat{\mathbf{x}}+\left(\frac{2 \pi}{a}\right) \hat{\mathbf{y}} ; \quad \mathbf{b}_{3}=\left(\frac{2 \pi}{c}\right) \hat{\mathbf{z}} .
$$

(iii) Describe and sketch the first Brillouin zone of the hexagonal space lattice.
6. Consider a plane $h k l$ in a crystal lattice. (i) Prove that the reciprocal lattice vector $\mathbf{G}=h \mathbf{b}_{1}+k \mathbf{b}_{2}+l \mathbf{b}_{3}$ is perpendicular to this plane.

[^0](ii) Prove that the distance between two adjacent parallel planes of the lattice is $d_{h k l}=2 \pi /|\mathbf{G}|$.
(iii) For a simple cubic lattice prove that $d_{h k l}=a / \sqrt{h^{2}+k^{2}+l^{2}}$.

[^0]: *Electronic address: sunil.phy30@gmail.com

